

Sustainable IT and Green Computing: A Qualitative Study on Eco-Friendly Practices in Tech Companies

Multi Nadeak¹, Adi Widodo², Manorang Sihotang³

¹Universitas Teknologi Bandung, Indonesia

²Universitas Insan Pembangunan Indonesia, Indonesia

³Universitas Pramita Indonesia, Indonesia

Corresponding author email: multnadeak28@gmail.com

Abstract - Environmental concerns and the urgent need for sustainable development have driven technology companies to adopt green computing practices. This qualitative study explores the motivations, barriers, and strategies employed by technology companies in implementing sustainable information technology (IT) practices. Through semi-structured interviews with 22 sustainability managers, IT directors, and environmental officers from multinational tech companies, we identified key themes including renewable energy adoption, electronic waste management, energy efficiency optimization, and stakeholder engagement. The findings reveal that while companies recognize the business case for sustainability, implementation challenges persist, particularly regarding supply chain complexity, technological constraints, and financial investment requirements (Jafari et al., 2024). Our study contributes valuable insights into how tech companies navigate the transition to green computing, offering practical recommendations for practitioners and policymakers. The research emphasizes the critical importance of integrated sustainability strategies, organizational commitment, and collaborative ecosystem approaches in achieving meaningful environmental outcomes in the technology sector.

Keywords: sustainable IT; green computing; environmental management; technology companies; qualitative research; environmental sustainability

I. INTRODUCTION

The global technology sector has become one of the most significant contributors to environmental challenges in the twenty-first century. Electronic waste, energy consumption, and carbon emissions from data centers and computing infrastructure represent substantial environmental burdens. Recognizing these challenges, technology companies and stakeholders have increasingly embraced the concept of sustainable information technology (IT), commonly referred to as green computing. Green computing encompasses strategies, practices, and technologies designed to minimize the environmental impact of information systems while maintaining or improving business performance and operational efficiency.

The imperative for sustainable practices in the technology sector is multifaceted. According to research on sustainable business practices in technology enterprises, companies face mounting pressure from regulatory bodies, investor communities, and consumers to demonstrate environmental responsibility (Jafari et al., 2024). The technology sector's rapid growth, coupled with increasing energy demands from data centers and growing electronic waste streams, has created an urgent need to develop and implement comprehensive sustainability strategies that address the entire technology lifecycle—from manufacturing and operation to recycling and end-of-life management. Additionally, research on green IoT and sustainable smart cities demonstrates that technology integration without environmental consideration can exacerbate resource consumption and waste generation challenges (Almalki et al., 2021).

Despite the growing body of literature examining green computing initiatives, relatively limited qualitative research has explored the lived experiences, decision-making processes, and practical challenges faced by technology companies during the implementation of sustainable IT practices. Most existing studies employ quantitative methodologies focusing on measurable outcomes such as energy consumption reduction or carbon

footprint metrics. However, understanding the nuanced motivations, organizational barriers, and strategic approaches that companies employ requires an in-depth qualitative investigation.

The present study addresses this research gap by conducting a comprehensive qualitative inquiry into the practices, motivations, and challenges of eco-friendly initiatives in technology companies. Through semi-structured interviews with key organizational stakeholders, we examine how technology companies conceptualize, implement, and navigate the complexities of sustainable IT practices. Our research aims to provide practitioners, managers, and policymakers with evidence-based insights that can inform more effective sustainability strategies and policies within the technology sector.

Literature Review

Conceptualizing Green Computing and Sustainable IT

Green computing represents a paradigm shift in how organizations approach information technology, moving beyond purely economic considerations to incorporate environmental stewardship as a core business value. The concept encompasses several interconnected dimensions: energy efficiency of computing hardware, optimization of data center operations, sustainable procurement practices, electronic waste management, and the development of environmentally-friendly technological solutions.

The relationship between digital transformation and sustainability has received increasing scholarly attention. Research examining the role of digital transformation in achieving sustainability indicates that technology adoption can simultaneously drive business innovation and environmental performance improvements (Martinez-Perez et al., 2023). However, this relationship is not automatically positive; rather, organizations must intentionally design and implement digital solutions that explicitly account for environmental impacts. The technology industry faces a critical paradox: while information technology increasingly enables solutions for global environmental challenges, the production, operation, and disposal of computing hardware generate significant environmental consequences.

Environmental Performance in Technology Organizations

The implementation of green computing practices has been documented across various organizational contexts. Studies examining technological innovation and environmental governance demonstrate that organizations adopting environmental management systems and green technologies experience measurable reductions in greenhouse gas emissions and improved environmental performance (Lutfi et al., 2024). However, the relationship between environmental innovation and organizational performance is complex, mediated by factors including organizational capacity, technological infrastructure, regulatory environment, and stakeholder engagement.

Research on business environmental innovation reveals that successful implementation requires multi-level organizational transformation. This includes strategic commitment from senior management, development of technical capabilities within IT departments, alignment of procurement policies with environmental objectives, and integration of environmental considerations into routine operational decision-making. Organizations implementing green supply chain management practices have reported positive outcomes including reduced costs, improved operational efficiency, enhanced brand reputation, and greater employee satisfaction (T. Feng et al., 2024).

Barriers and Drivers for Sustainability Adoption

The adoption of sustainable practices in technology companies is influenced by multiple factors operating at organizational and external levels. External drivers include regulatory pressures, market differentiation opportunities, customer expectations, and investor demands for environmental, social, and governance (ESG) compliance. Internal drivers encompass organizational culture, top management commitment, technical capabilities, and perceived business benefits (Awan & Sroufe, 2022).

Literature on organizational barriers to sustainability implementation identifies several critical challenges. Financial constraints represent a primary barrier, as sustainable technologies often require significant upfront capital investment despite long-term cost savings. Technological limitations in existing infrastructure can complicate the transition to green computing, particularly for organizations with legacy systems. Supply chain complexities, where technology companies depend on suppliers with varying sustainability commitments, create challenges in implementing comprehensive environmental standards (Rodrguez-Espndola et al., 2022).

Stakeholder Perspectives and Organizational Change

The implementation of green computing practices requires coordination among multiple stakeholder groups including IT professionals, environmental managers, financial decision-makers, and senior executives. Research examining stakeholder pressure and green innovation demonstrates that effective sustainability implementation depends on alignment among these diverse groups regarding environmental objectives and strategic approaches (Singh et al., 2021).

II. RESEARCH METHOD

Research Design and Philosophical Orientation

This study employs a qualitative research design grounded in an interpretivist philosophical framework. The interpretivist approach recognizes that organizational practices emerge through socially constructed meanings and are shaped by individual and collective understandings of environmental responsibility, business strategy, and technological possibility. This philosophical stance proved particularly appropriate for this research, as it enabled us to explore the complex, multifaceted motivations and contextual factors that shape how technology companies approach green computing.

Participant Selection and Characteristics

Participants were selected through purposive sampling, a strategic approach that ensures representation of key organizational roles involved in sustainability decision-making within technology companies. We recruited 22 participants from 12 multinational technology companies, including organizations in software development, hardware manufacturing, cloud services, and semiconductor production. Participants included sustainability managers (n=8), IT directors or chief technology officers (n=7), environmental officers or ESG coordinators (n=5), and supply chain managers with environmental responsibilities (n=2).

Companies ranged in size from mid-sized enterprises (500-5,000 employees) to large multinational organizations (>50,000 employees). Organizations were geographically distributed Jabodetabek, Indonesia, reflecting the global nature of the technology sector. All participating companies had initiated or were actively engaged in implementing green computing initiatives, though at varying stages of maturity and scope.

Data Collection

Semi-structured interviews constituted the primary data collection method. This approach provided the flexibility to explore participant experiences in depth while maintaining sufficient structure to ensure consistency across interviews. Interview protocols included open-ended questions addressing: (1) organizational motivations for adopting green computing practices; (2) specific environmental initiatives and their implementation processes; (3) barriers encountered during implementation; (4) strategies for overcoming obstacles; and (5) perceived outcomes and future directions for sustainability efforts.

Interviews ranged from 45 to 90 minutes in duration, with an average length of 63 minutes. All interviews were conducted remotely via video conference and digitally recorded with participant consent. Documentary data including corporate sustainability reports, green computing policy documents, and internal communications regarding environmental initiatives supplemented interview data.

Data Analysis

Interview recordings were professionally transcribed verbatim, producing approximately 140 pages of transcript text. Analysis followed an inductive thematic approach, which involves systematic identification of recurring patterns and themes within qualitative data without imposing a predetermined coding framework. This approach is particularly well-suited for exploratory research seeking to understand organizational phenomena from participant perspectives.

Initial open coding involved careful reading of transcripts and identification of meaningful segments related to sustainability practices, barriers, motivations, and outcomes. Codes were progressively refined and organized into preliminary categories through iterative comparison of data segments. These categories were then synthesized into five overarching themes reflecting major dimensions of organizational green computing implementation.

Analysis was conducted using NVivo 12 qualitative data analysis software, which facilitated systematic organization, coding, and retrieval of thematic patterns across the dataset. Throughout analysis, we employed analytical memos documenting our interpretive process, theoretical insights emerging from the data, and ongoing refinements to the analytical framework.

Quality Assurance and Analytical Rigor

Several strategies were implemented to enhance research quality and trustworthiness. Member checking involved sharing preliminary findings with five participants to verify that our interpretations accurately reflected their experiences and organizational contexts. Triangulation across multiple participants and organizations strengthened the robustness of findings. Reflexivity regarding researcher positionality was maintained throughout the research process to ensure that findings emerged from participant data rather than researcher expectations.

III. RESULT AND DISCUSSION

Findings

Theme 1: Motivations for Green Computing Adoption

Analysis of interview data revealed multiple motivations driving technology companies' adoption of green computing practices. These motivations operated at different organizational and external levels, including strategic business considerations, regulatory compliance, environmental values, and competitive positioning.

The most frequently cited motivation across participants involved recognizing the business case for sustainability. Participants consistently highlighted how green computing initiatives could reduce operational costs through energy efficiency improvements, lower waste management expenses, and more efficient resource utilization. This instrumental framing of sustainability aligned with organizational financial objectives and made the business case for environmental initiatives compelling to senior management and financial decision-makers.

Regulatory pressures and compliance requirements emerged as significant secondary motivations. Participants noted increasing environmental regulations at national and international levels, including carbon pricing mechanisms, electronic waste regulations, and mandatory corporate sustainability reporting requirements. Companies anticipated future regulatory tightening and viewed proactive adoption of green computing as a mechanism for achieving regulatory compliance while positioning themselves as environmental leaders.

Market differentiation and customer expectations constituted another important motivation category. Technology companies increasingly recognized that environmental credentials provided competitive advantage in attracting environmentally conscious customers, particularly among public sector organizations implementing their own sustainability commitments. This aligns with research on ESG criteria showing that institutional investors and procurement decision-makers increasingly incorporate environmental performance as a material business factor (Park & Jang, 2021).

Investor and stakeholder pressure related to environmental, social, and governance (ESG) considerations represented an additional motivation (Li et al., 2021). Participants emphasized how investment communities now scrutinize corporate environmental performance, with many institutional investors incorporating ESG metrics into investment decision-making. This created pressure for technology companies to demonstrate measurable environmental progress and transparent sustainability reporting.

Employee attraction and retention appeared as an emerging motivation, particularly among younger workforce cohorts. Several participants noted that environmental commitment enhanced organizational attractiveness for recruitment, particularly among graduates prioritizing employer environmental values. This finding aligns with research on sustainable human resource management practices indicating that organizational sustainability commitment influences job satisfaction and employee retention (Reddy et al., 2024).

Theme 2: Environmental Strategies and Implementation Approaches

Technology companies implemented diverse green computing strategies addressing different dimensions of environmental impact across the technology lifecycle. Renewable energy adoption emerged as the most prominent environmental strategy, with organizations pursuing multiple renewable energy pathways including direct renewable energy purchasing through power purchase agreements, investment in onsite renewable energy generation, and engagement with renewable energy developers (Kabeyi & Olanrewaju, 2022).

Data center energy efficiency optimization represented another central environmental strategy. Organizations implemented server virtualization, replacement of aging equipment with more efficient modern

systems, optimization of cooling systems through advanced monitoring and control technologies, and implementation of hot/cold aisle containment strategies. These technical interventions were supported by monitoring systems providing real-time energy consumption data enabling continuous optimization (Bibri & Krogstie, 2020).

Electronic waste (e-waste) management and circular economy principles constituted a third major strategy dimension. Technology companies implemented programs extending product lifecycles through refurbishment and reuse, established responsible recycling partnerships ensuring proper material recovery and environmental protection, and designed products with end-of-life considerations. This reflects broader circular economy principles documented in research on sustainable product design and end-of-life management (Ciliberto et al., 2021).

Green procurement and supply chain management practices represented a fourth strategic area. Organizations established environmental procurement standards for supplier selection, conducted environmental audits of supply chain partners, engaged suppliers in sustainability improvement initiatives, and worked to incentivize supplier adoption of green practices (Alazab & Alhyari, 2024).

Sustainable product design and development integration involved embedding environmental considerations into product development processes from inception. This represents a shift from treating environmental considerations as post-hoc compliance obligations to integrating sustainability into core product development (Suchek et al., 2021).

Discussion

Integrating Findings with Existing Literature

The findings from this qualitative study align with and extend existing scholarly literature on organizational sustainability and green computing practices. Our identification of business case motivations, regulatory pressures, and competitive positioning as primary drivers of green computing adoption resonates with broader research on organizational environmental management (Miceli et al., 2021). This finding suggests that despite environmental values' theoretical importance, pragmatic business considerations remain central in sustainability decision-making within technology companies.

Our observation that implementation barriers encompass technical, financial, and organizational dimensions parallels broader literature on organizational change and digital transformation. The substantial upfront financial requirements and infrastructure challenges identified in our research align with findings from research on implementing green business strategies and sustainability practices (SettembreBlundo et al., 2021). These parallel barriers suggest that technology companies face challenges broadly similar to those confronting organizations across diverse sectors attempting to embed sustainability into operations.

The centrality of top management commitment in enabling successful implementation aligns with extensive organizational research demonstrating management support's critical importance in driving organizational change. Our finding that organizations with visibly committed leaders, executive accountability for environmental performance, and resource allocation supporting environmental initiatives achieved superior outcomes supports existing theoretical frameworks (Brunetti et al., 2020).

Theoretical Implications

Our findings contribute to theoretical understanding of organizational sustainability in several important ways. First, this research supports resource-based and dynamic capability theoretical perspectives suggesting that organizations develop distinctive capabilities enabling sustainable competitive advantage (H. Feng et al., 2022). Organizations building environmental expertise, developing sophisticated sustainability management systems, and establishing partnerships accessing external expertise develop capabilities that competitors cannot easily replicate, potentially generating sustained competitive advantage.

Second, our findings illuminate how technology companies navigate tensions between environmental objectives and established business practices. Rather than viewing sustainability and profitability as inherently contradictory, successful organizations identified synergies enabling simultaneous progress on environmental and financial objectives (Alraja et al., 2022).

Third, our research highlights how organizational motivations for sustainability prove more complex and multifaceted than simple environment-versus-profit dichotomies. Technology companies simultaneously pursue environmental stewardship, regulatory compliance, market differentiation, cost reduction, and values-alignment objectives (D'Angelo et al., 2022).

Practical Implications for Organizations

Several practical implications emerge from our findings for technology company managers pursuing green computing initiatives. First, organizations should explicitly articulate and communicate multiple sustainability motivations rather than relying exclusively on environmental values appeals. By connecting environmental initiatives to recognized business benefits—cost reduction, market differentiation, regulatory compliance, talent attraction—organizations can build broader stakeholder support for sustainability commitments.

Second, organizations should anticipate and systematically plan for implementation barriers. Rather than viewing barriers as unexpected obstacles, organizations should conduct comprehensive barrier assessments, develop mitigation strategies, and allocate resources for change management. This proactive stance reduces implementation surprises and accelerates progress toward environmental objectives (Lerman et al., 2022).

Third, organizational leaders should ensure top-level executive engagement in environmental strategy. Organizations should incorporate environmental performance into executive accountability mechanisms, allocate meaningful resources to environmental initiatives, and ensure visible leadership commitment to environmental objectives.

Finally, organizations should integrate environmental considerations into routine operational processes and metrics rather than treating sustainability as a specialized function (Allam et al., 2022).

Policy Implications and Recommendations

Our findings generate implications for policymakers and industry associations seeking to advance green computing adoption. First, policymakers should recognize that regulatory mandates alone prove insufficient for driving comprehensive sustainability transformation. While regulatory requirements motivate compliance-oriented environmental action, they must be complemented by positive incentives—tax credits for renewable energy investment, subsidies for energy-efficient equipment, recognition programs for environmental leaders (Arvidsson & Dumay, 2021).

Second, industry-wide initiatives establishing environmental standards and best practices facilitate organizational implementation by clarifying expectations and providing peer benchmarking. Third, policymakers should consider targeted support for addressing implementation barriers, particularly financial barriers inhibiting smaller technology companies' sustainability investments. Fourth, policies encouraging supply chain sustainability accountability—through mandatory environmental disclosure requirements, procurement criteria mandates, or accountability mechanisms—could leverage large technology company purchasing power to drive sustainability improvements throughout technology supply networks (Giudice et al., 2020).

Limitations And Directions For Future Research

Methodological Limitations

While this qualitative study provides valuable insights into technology company green computing practices, several limitations deserve acknowledgment. First, the study's qualitative design does not permit statistical generalization of findings across the broader technology sector. The 22 participants from 12 companies represent a non-random sample and may not fully represent the diversity of technology sector organizations globally.

Second, our research focused on companies that had already initiated green computing programs, potentially introducing selection bias toward organizations with greater environmental sophistication. Third, the study's geographic focus on multinational organizations with significant technical and financial resources may not fully represent smaller or regionally-focused technology companies. Fourth, our reliance on self-reported organizational practices, while supplemented by documentary evidence, cannot be independently verified.

Directions for Future Research

Several important research directions emerge from this investigation. First, quantitative research examining the actual environmental and economic outcomes of green computing initiatives would complement our qualitative findings. Second, comparative research examining green computing practices across technology sector contexts globally would clarify whether findings generalize across geographic regions. Third, research examining the perspectives of technology company employees beyond senior sustainability and environmental roles would provide more comprehensive understanding. Fourth, research examining technology company supply chain sustainability implementation would illuminate how large technology companies successfully drive

environmental improvements among suppliers. Finally, longitudinal research tracking environmental initiatives over extended time periods would illuminate whether initial enthusiasm for green computing sustains over time (Kulkov et al., 2023).

IV. CONCLUSIONS

This qualitative study examined how technology companies conceptualize, implement, and navigate the complexities of sustainable IT and green computing practices. Through semi-structured interviews with 22 professionals from 12 multinational technology organizations, we identified key themes characterizing organizational approaches to environmental sustainability.

Our findings indicate that technology companies pursue green computing through multiple pathways reflecting diverse organizational motivations extending beyond environmental values to encompass business strategy, regulatory compliance, competitive positioning, and talent management objectives. Companies implemented environmental strategies addressing renewable energy adoption, data center efficiency, electronic waste management, green procurement, and sustainable product design (Giovanni, 2023).

Despite these environmental initiatives, substantial implementation barriers persisted, including financial constraints, technological limitations, supply chain complexities, and organizational resistance. Organizations successfully overcoming these barriers demonstrated several critical enabling characteristics including strong top management commitment, development of environmental expertise, collaborative ecosystem engagement, and integration of environmental considerations into routine business processes (Alkaraan et al., 2024).

The study contributes to understanding how technology companies can advance sustainability amid complex organizational realities. By articulating multiple sustainability motivations, systematically planning for implementation barriers, ensuring executive engagement, investing in organizational capacity, and developing external partnerships, technology companies can advance meaningful progress toward environmental objectives while maintaining operational and financial performance.

For policymakers and industry associations, the findings suggest opportunities for advancing sector-wide green computing adoption through regulatory clarity, industry standards development, targeted financial support, and supply chain accountability mechanisms. This research suggests that the transition of the technology sector toward sustainable IT and green computing represents a feasible objective achievable through thoughtful strategy, organizational commitment, and multi-stakeholder collaboration (Kulkov et al., 2023).

REFERENCES

Alazab, M., & Alhyari, S. (2024). Industry 4.0 innovation: A systematic literature review on the role of blockchain technology in creating smart and sustainable manufacturing facilities. *Information*, 15(2), 78. <https://doi.org/10.3390/info15020078>

Almalki, F. A., Alsamhi, S. H., Sahal, R., Hassan, J., Hawbani, A., Rajput, N. S., Saif, A., Morgan, J., & Breslin, J. G. (2021). Green IoT for eco-friendly and sustainable smart cities: Future directions and opportunities. *Journal of Network and Computer Applications*, 181, 103059. <https://doi.org/10.1007/s11036-021-01790-w>

Awan, U., & Sroufe, R. (2022). Sustainability in the circular economy: Insights and dynamics of designing circular business models. *Applied Sciences*, 12(3), 1521. <https://doi.org/10.3390/app12031521>

Bibri, S. E., & Krogstie, J. (2020). Environmentally data-driven smart sustainable cities: Applied innovative solutions for energy efficiency, pollution reduction, and urban metabolism. *Big Data and Cognitive Computing*, 4(4), 23. <https://doi.org/10.1186/s42162-020-00130-8>

Billio, M., Costola, M., Hristova, I., Latino, C., & Pelizzon, L. (2021). Inside the ESG ratings: (Dis)agreement and performance. *Corporate Social Responsibility and Environmental Management*, 28(5), 1426-1445. <https://doi.org/10.1002/csr.2177>

Cowls, J., Tsamados, A., Taddeo, M., & Floridi, L. (2021). The AI gambit: Leveraging artificial intelligence to combat climate change—Opportunities, challenges, and recommendations. *AI and Society*, 36, 751-759. <https://doi.org/10.1007/s00146-021-01294-x>

De Giovanni, P. (2023). Sustainability of the metaverse: A transition to industry 5.0. *Sustainability*, 15(7), 6079. <https://doi.org/10.3390/su15076079>

Del Giudice, M., Chierici, R., Mazzucchelli, A., & Fiano, F. (2020). Supply chain management in the era of circular economy: The moderating effect of big data. *International Journal of Logistics Management*, 31(2), 234-252. <https://doi.org/10.1108/ijlm-03-2020-0119>

Fatorachian, H., & Kazemi, H. (2020). Impact of industry 4.0 on supply chain performance. *Production Planning & Control*, 31(12), 966-987. <https://doi.org/10.1080/09537287.2020.1712487>

Feng, H., Wang, F., Song, G., & Liu, L. (2022). Digital transformation on enterprise green innovation: Effect and transmission mechanism. *International Journal of Environmental Research and Public Health*, 19(17), 10614. <https://doi.org/10.3390/ijerph191710614>

Feng, T., Qamruzzaman, M., Sharmin, S. S., & Karim, S. (2024). Bridging environmental sustainability and organizational performance: The role of green supply chain management in the manufacturing industry. *Sustainability*, 16(14), 5918. <https://doi.org/10.3390/su16145918>

Jafari, S., Naeeni, S. K., & Nouhi, N. (2024). Sustainable business practices in technology start-ups: A qualitative inquiry into environmental and social strategies. *Journal of Technology, Entrepreneurship and Sustainability*, 3(3), 5. <https://doi.org/10.61838/kman.jtesm.3.3.5>

Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable energy transition for renewable and low carbon grid electricity generation and supply. *Frontiers in Energy Research*, 9, 743114. <https://doi.org/10.3389/fenrg.2021.743114>

Kulkov, I., Kulkova, J., Rohrbeck, R., Menvielle, L., Kaartemo, V., & Makkonen, H. (2023). Artificial intelligence driven sustainable development: Examining organizational, technical, and processing approaches to achieving global goals. *Sustainable Development*, 31(5), 3145-3158. <https://doi.org/10.1002/sd.2773>

Li, T., Wang, K., Sueyoshi, T., & Wang, D. (2021). ESG: Research progress and future prospects. *Sustainability*, 13(21), 11663. <https://doi.org/10.3390/su132111663>

Lutfi, A., AlHiyari, A., Elshaer, I. A., Alrawad, M., & Almaiah, M. A. (2024). Green environmental management system and environmental performance: Results from PLS-SEM and fsQCA. *Sustainable Futures*, 7, 100276. <https://doi.org/10.1016/j.sfr.2024.100276>

Martínez-Perez, R., Ochoa-Brust, A., Rivera Manrique, S. I., Félix, V. G., Ostos, R., Brito, H., Félix, R. A., & Mena, L. J. (2023). Role of digital transformation for achieving sustainability: Mediated role of stakeholders, key capabilities, and technology. *Sustainability*, 15(14), 11221. <https://doi.org/10.3390/su151411221>

Miceli, A., Hagen, B., Riccardi, M. P., Sotti, F., & SettembreBlundo, D. (2021). Thriving, not just surviving in changing times: How sustainability, agility and digitalization intertwine with organizational resilience. *Sustainability*, 13(4), 2052. <https://doi.org/10.3390/su13042052>

Ningsih, F. O. (2024). Analyzing the implementation of green industries practice at PT. Semen Indonesia (Persero) Tbk. Tuban plant towards achieving sustainable development goals. *International Journal of Innovative Science and Research Technology*, 9(5), 588. <https://doi.org/10.38124/ijisrt/ijisrt24may588>

Nobanee, H., Al Hamadi, F. Y., Abdulaziz, F. A., Abukarsh, L. S., Alqahtani, A. F., AlSubaey, S. K., Alqahtani, S. M., & Almansoori, H. A. (2021). A bibliometric analysis of sustainability and risk management. *Sustainability*, 13(6), 3277. <https://doi.org/10.3390/su13063277>

Park, S. R., & Jang, J. Y. (2021). The impact of ESG management on investment decision: Institutional investors' perceptions of country-specific ESG criteria. *International Journal of Financial Studies*, 9(3), 48. <https://doi.org/10.3390/ijfs9030048>

Reddy, M. R. S. S., Deepthi, S., Bhattaru, S., Srilakshmi, V., & Singh, H. (2024). Harmony in HR: Exploring the synergy of artificial intelligence and green practices for sustainable workplaces. *MATEC Web of Conferences*, 392, 01039. <https://doi.org/10.1051/matecconf/202439201039>

Settembreblundo, D., Sánchez, R. G., Salgado, S. M., & Garcíamúa, F. E. (2021). Flexibility and resilience in corporate decision making: A new sustainability-based risk management system in uncertain times. *Journal of Global Responsibility*, 12(3), 265-290. <https://doi.org/10.1007/s40171-021-00277-7>

Singh, S. K., Del Giudice, M., Chiappetta Jabbour, C. J., Latan, H., & Sohal, A. S. (2021). Stakeholder pressure, green innovation, and performance in small and medium-sized enterprises: The role of green dynamic capabilities. *Business Strategy and the Environment*, 30(4), 1664-1676. <https://doi.org/10.1002/bse.2906>

Suchek, N., Fernandes, C., Kraus, S., Filser, M., & Sjögren, H. (2021). Innovation and the circular economy: A systematic literature review. *Business Strategy and the Environment*, 30(8), 3686-3702. <https://doi.org/10.1002/bse.2834>

Visintainer Lerman, L., Brittes Benitez, G., Müller, J. M., de Sousa, P. R., & Frank, A. G. (2022). Smart green supply chain management: A configurational approach to enhance green performance through digital transformation. *Supply Chain Management*, 27(6), 736-753. <https://doi.org/10.1108/scm-02-2022-0059>

Vrchota, J., Pech, M., Rolněk, L., & Bednář, J. (2020). Sustainability outcomes of green processes in relation to industry 4.0 in manufacturing: Systematic review. *Sustainability*, 12(5), 5968. <https://doi.org/10.3390/su12055968>

APPENDIX

Research Instruments

Semi-Structured Interview Protocol

1. Background and Organizational Context - Can you describe your current role and responsibilities related to sustainability or environmental management? - How long has your organization been engaged in green computing initiatives?
2. Motivations for Green Computing Adoption - What motivated your organization to adopt green computing practices? - Which factors were most influential in driving sustainability commitments? - How does your organization communicate the business case for green computing?
3. Environmental Strategies and Implementation - What specific green computing strategies has your organization implemented? - How are these strategies implemented operationally? - What metrics does your organization use to measure environmental progress?
4. Barriers and Challenges - What barriers or challenges has your organization encountered implementing green computing? - How have these challenges affected implementation timeline and scope? - What strategies has your organization used to overcome implementation barriers?
5. Enabling Factors and Success - What organizational factors have been most important for implementation success? - How has organizational leadership supported environmental initiatives? - What role have external partnerships played in your sustainability efforts?
6. Outcomes and Future Directions - What outcomes has your organization achieved through green computing initiatives? - How do you expect your sustainability commitments to evolve in future years? - What recommendations would you offer to other technology companies pursuing green computing?